視頻標(biāo)簽:加減消元法
所屬欄目:初中數(shù)學(xué)優(yōu)質(zhì)課視頻
視頻課題:北師大版初中數(shù)學(xué)八年級(jí)上冊(cè)5.2《加減消元法(第2課時(shí))》青海省優(yōu)課
本視頻配套資料的教學(xué)設(shè)計(jì)、課件 /課堂實(shí)錄及教案下載可聯(lián)本站系客服
第五章 二元一次方程組
2. 加減消元法(第2課時(shí))
一、學(xué)生起點(diǎn)分析
學(xué)生的知識(shí)技能基礎(chǔ):在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)掌握了有理數(shù)、合并同類項(xiàng)、去括號(hào)等法則,能熟練的進(jìn)行簡(jiǎn)單的整式的加、減法運(yùn)算整式的運(yùn)算,知道方程的解的意義,能熟練的求解一元一次方程,了解了二元一次方程以及解的意義、二元一次方程組及其解的意義,能通過代人消元法求解二元一次方程組.
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了列整式、列一元一次方程并求解,列二元一次方程組解決了一些簡(jiǎn)單的現(xiàn)實(shí)問題,感受到了方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的有效模型,通過解一元一次方程和用代入消元法解二元一次方程組獲得了解二元一次方程的基本經(jīng)驗(yàn)和基本技能;同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力.
二、教學(xué)任務(wù)分析
教科書基于學(xué)生對(duì)前面解一元一次方程和用代入消元法解二元一次方程組基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):會(huì)用加減消元法解二元一次方程組,了解解二元一次方程組的“消元”思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想.
《課程標(biāo)準(zhǔn)(2011年版)》把方程與方程組的重點(diǎn)放在解法和應(yīng)用上,特別強(qiáng)調(diào)體會(huì)方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的有效模型,如何解方程與方程組時(shí)方程與方程組教學(xué)的主體和重點(diǎn).對(duì)于二元一次方程組來講,強(qiáng)調(diào)“消元”的思想和方法,應(yīng)是貫穿于始終的一條主線,通過“消元”,將二元一次方程轉(zhuǎn)化為一元一次方程實(shí)現(xiàn)求解的目的,體現(xiàn)了化繁為簡(jiǎn),以簡(jiǎn)馭繁的基本策略,對(duì)促進(jìn)了學(xué)生理性思維的發(fā)展具有重要意義.通過第一課時(shí)是學(xué)習(xí),學(xué)生已經(jīng)能夠解一般的二元一次方程組,但對(duì)于有些方程用代人消元法解可能比較繁雜,用加減消元法要簡(jiǎn)單一些,同時(shí)加減消元法在學(xué)生將來的矩陣運(yùn)算中有廣泛的應(yīng)用。因此這個(gè)課時(shí)就進(jìn)一步學(xué)習(xí)二元一次方程組的加減消元法.
加減消元法是解二元一次方程組的基本方法之一,它要求兩個(gè)方程中必須有某一個(gè)未知數(shù)的系數(shù)的絕對(duì)值相等(或利用等式的基本性質(zhì)在方程兩邊同時(shí)乘以一個(gè)適當(dāng)?shù)牟粸?的數(shù)或式,使兩個(gè)方程中某一個(gè)未知數(shù)的系數(shù)的絕對(duì)值相等),然后利用等式的基本性質(zhì)在方程兩邊同時(shí)相加或相減消元.
為此,本節(jié)課的教學(xué)目標(biāo)是: (1)會(huì)用加減消元法解二元一次方程組.
(2)進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.
(3) 選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析能力. 本節(jié)課的教學(xué)重點(diǎn)是:
用加減消元法解二元一次方程組. 本節(jié)課的教學(xué)難點(diǎn)是:
在解題過程中進(jìn)一步體會(huì)“消元”思想和“化未知為已知”的化歸思想.
三、教學(xué)過程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):情境引入;第二環(huán)節(jié):講授新知;第三環(huán)節(jié):鞏固新知;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè).
第一環(huán)節(jié):情境引入
內(nèi)容:鞏固練習(xí),在練習(xí)中發(fā)現(xiàn)新的解決方法
怎樣解下面的二元一次方程組呢?(學(xué)生在練習(xí)本上做,教師巡視、引導(dǎo)、解疑,注意發(fā)現(xiàn)學(xué)生在解答過程中出現(xiàn)的新的想法,可以讓用不同方法解題的學(xué)生將他們的方法板演在黑板上,完后進(jìn)行評(píng)析,并為加減消元法的出現(xiàn)鋪路.)
35212511xyxy
①
②
學(xué)生可能的解答方案1:
解1:把②變形,得:511
2
yx, ③
把③代入①,得:511
35212
yy, 解得:3y.
把3y代入②,得:2x.
所以方程組的解為2
3
xy.
學(xué)生可能的解答方案2: 解2:由②得5211yx, ③
把y5當(dāng)做整體將③代入①,得:321121xx, 解得:2x.
把2x代入③,得:3y. 所以方程組的解為2
3
xy
.
(此種解法體現(xiàn)了整體的思想)
學(xué)生可能的解答方案3:(觀察發(fā)現(xiàn):兩個(gè)方程中一個(gè)含有5y,而另一個(gè)是
5y,兩者互為相反數(shù))
解3:根據(jù)等式的基本性質(zhì) 方程①+方程②得:105x, 解得:2x,
把2x代入①,解得:3y,
所以方程組的解為23
xy.
通過上面的練習(xí)發(fā)現(xiàn),同學(xué)們對(duì)代入消元法都掌握得很好了,基本上都能夠按要求解出二元一次方程組的解(如方案1),可是也有同學(xué)發(fā)現(xiàn)(方案2)的解法比(方案1)的解法簡(jiǎn)單,他是將5y作為一個(gè)整體代入消元,依然體現(xiàn)了代入法的核心是代入“消元”,通過“消元”,使“二元”轉(zhuǎn)化為“一元”,從而使問題得以解決,那么(方案3)的解法又如何?它達(dá)到“消元”的目的了嗎?
(留些時(shí)間給學(xué)生觀察,注意引導(dǎo)學(xué)生觀察方程中某一未知數(shù)的系數(shù),如x的系數(shù)或y的系數(shù))
引導(dǎo)學(xué)生發(fā)現(xiàn)方程①和②中的5y和5y互為相反數(shù),根據(jù)相反數(shù)的和為零
(方案3)將方程①和②的左右兩邊相加,然后根據(jù)等式的基本性質(zhì)消去了未知數(shù)y,得到了一個(gè)關(guān)于x的一元一次方程,從而實(shí)現(xiàn)了化“二元”為“一元”的目的.
這就是我們這節(jié)課要學(xué)習(xí)的二元一次方程組的解法中的第二種方法——加減消元法.
目的:在練習(xí)的過程中學(xué)會(huì)思考、分析,通過思考自然地得出我們要研究和解決的問題.
設(shè)計(jì)效果:通過學(xué)生練習(xí)、對(duì)比、討論,既鞏固了已學(xué)的用代入法解二元一次方程組的知識(shí),又在此過程中發(fā)現(xiàn)了新的解二元一次方程組的方法——加減消元法.
說明:如果班級(jí)學(xué)生不能發(fā)現(xiàn)方法3,教師可以適當(dāng)引導(dǎo),如在方法二中,我們直接解出5y,代入另一式子從而消去一個(gè)未知數(shù),是否可以不解出直接消去這個(gè)未知數(shù)呢??jī)蓚(gè)式子中y的系數(shù)有什么關(guān)系?能否通過等式性質(zhì)進(jìn)行加減直接消去這個(gè)未知數(shù)呢?
第二環(huán)節(jié):講授新知 內(nèi)容1:(教師板書課題)
下面我們就用剛才的方法解下面的二元一次方程組.(教師規(guī)范表達(dá)解答過程,為學(xué)生作出示范)
例1 解下列二元一次方程組(若學(xué)生先前的環(huán)節(jié)接受得好,可以讓學(xué)生獨(dú)立完成,教師再跟進(jìn)講授)
(1)257231xyxy
分析:觀察到方程①、②中未知數(shù)x的系數(shù)相等,可以利用兩個(gè)方程相減消去未知數(shù)x.
解:②-①,得:88y, 解得:1y, 把1y代入①,得:752x,
解得:1x,
①
②
所以方程組的解為1
1
xy.
(解答完本題后,口算檢驗(yàn),讓學(xué)生養(yǎng)成進(jìn)行檢驗(yàn)的習(xí)慣,同時(shí)教師需強(qiáng)調(diào)以下兩點(diǎn):
(1)注意解此題的易錯(cuò)點(diǎn)是②-①時(shí)是232517xyxy,方程左邊去括號(hào)時(shí)注意符號(hào).另外解題時(shí),①-②或②-①都可以消去未知數(shù)x,不過在①-②得到的方程中,y的系數(shù)是負(fù)數(shù),所以在上面的解法中選擇②-①;
(2)把1y代入①或②,最后結(jié)果是一樣的,但我們通常的作法是將所求出的一個(gè)未知數(shù)的值代入系數(shù)較簡(jiǎn)單的方程中求出另一個(gè)未知數(shù)的值.
內(nèi)容2:過手訓(xùn)練:用加減消元法解下列方程組:
(1)52953
xyxy, (2)3827xyxy.
目的:由學(xué)生做練習(xí),體會(huì)加減消元法的基本特點(diǎn),熟悉加減消元法的基本步驟,提升學(xué)生用加減消元法解二元一次方程組的基本技能,積累解二元一次方程的活動(dòng)經(jīng)驗(yàn).
設(shè)計(jì)效果:學(xué)生都能迅速、正確的表述解答過程,嘗到解方程組成功的快樂,激發(fā)了學(xué)會(huì)解二元一次方程組的信心和熱情,為后面問題的處理打下了心理基礎(chǔ).
師生一起分析上面的解答過程,歸納出下面的一些規(guī)律:
在方程組的兩個(gè)方程中,若某個(gè)未知數(shù)的系數(shù)是相反數(shù),則可直接把這兩個(gè)方程的兩邊分別相加,消去這個(gè)未知數(shù);若某個(gè)未知數(shù)的系數(shù)相等,可直接把這兩個(gè)方程的兩邊分別相減,消去這個(gè)未知數(shù)得到一個(gè)一元一次方程,從而求出它的解,這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱加減法)
內(nèi)容3:例2 解方程組 23123417
xyxy
(先留一定的時(shí)間讓學(xué)生觀察此方程組,讓學(xué)生說明自己觀察到方程有什么特點(diǎn),能不能自己解決此方程組,用什么方法解決?如學(xué)生提出用代入消元法,可以讓學(xué)生先按此法完成,然后再問能不能用剛學(xué)過的加減消元法解決?讓學(xué)生討論嘗試,學(xué)生可能得到的結(jié)論如下)
①
②
1.對(duì)于174312
32yxyx用加減消元法解,x、y的系數(shù)既不相同也不是相反數(shù),
沒有辦法用加減消元法.
2.是不是可以這樣想,將方程組174312
32yxyx中的方程用等式的基本性質(zhì)將
這個(gè)方程組中的x或y的系數(shù)化成相等(或互為相反數(shù))的情形,再用加減消元法,達(dá)到消元的目的.
3.只要在方程①和方程②的兩邊分別除以2和3,x的系數(shù)不就變成“1”了嗎?這樣就可以用加減消元法了.
4.不同意3的做法.如果這樣做,是可以解決這一問題,但y的系數(shù)和常數(shù)項(xiàng)都變成了分?jǐn)?shù),這樣解是不是變麻煩了嗎?那還不如用代入消元法了.不如找x的系數(shù)2和3的最小公倍數(shù)6,在方程①兩邊同乘以3,得3696yx③,在方程②兩邊同乘以2,得3486yx④,然后③-④,就可以將x消去,得2y,
把2y代入①得,3x.所以方程組的解為.
2,
3yx
(在引導(dǎo)的過程中,肯定學(xué)生的好的想法.)其實(shí)在我們學(xué)習(xí)數(shù)學(xué)的過程中,二元一次方程組中未知數(shù)的系數(shù)不一定剛好是1或-1,或同一個(gè)未知數(shù)的系數(shù)剛好相同或相反.我們遇到的往往就是這樣的方程組,我們要想比較簡(jiǎn)捷地把它解出來,就需要轉(zhuǎn)化為同一個(gè)未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請(qǐng)大家把解答過程寫出來.
解:①×3,得:6936xy, ③ ②×2,得:3486yx, ④ ③-④,得:2y. 將2y代入①,得:3x. 所以原方程組的解是
23
yx. 內(nèi)容4:議一議
根據(jù)上面幾個(gè)方程組的解法,請(qǐng)同學(xué)們思考下面兩個(gè)問題: (1)加減消元法解二元一次方程組的基本思路是什么? (2)用加減消元法解二元一次方程組的主要步驟有哪些? (由學(xué)生分組討論、總結(jié)并請(qǐng)學(xué)生代表發(fā)言) [師生共析]
(1)用加減消元法解二元一次方程組的基本思路仍然是“消元”. (2)用加減法解二元一次方程組的一般步驟是:
①變形----找出兩個(gè)方程中同一個(gè)未知數(shù)系數(shù)的絕對(duì)值的最小公倍數(shù),然后分別在兩個(gè)方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).
②加減消元,得到一個(gè)一元一次方程. ③解一元一次方程.
④把求出的未知數(shù)的解代入原方程組中的任一方程,求出另一個(gè)未知數(shù)的值,從而得方程組的解.
過手訓(xùn)練:用加減消元法解方程組:4433
3(4)4(2)
xyxy
. 注意:對(duì)于較復(fù)雜的二元一次方程組,應(yīng)先化簡(jiǎn)(去分母,去括號(hào),合并同類項(xiàng)等).通常要把每個(gè)方程整理成含未知數(shù)的項(xiàng)在方程的左邊,常數(shù)項(xiàng)在方程右邊的形式,再作如上加減消元的考慮.
目的:使學(xué)生明確使用加減法的條件,體會(huì)在某些條件下使用加減法的優(yōu)越性.
設(shè)計(jì)效果:通過本環(huán)節(jié)的學(xué)習(xí),加深和鞏固了學(xué)生對(duì)加減消元法的認(rèn)識(shí). 第三環(huán)節(jié):鞏固新知 內(nèi)容:
⑴回憶上一節(jié)的練習(xí)和習(xí)題,看哪些題用代入消元法解起來比較簡(jiǎn)單?哪些題我們用加減消元法簡(jiǎn)單?我們分組討論,并派一個(gè)代表闡述自己的意見,試說明兩種解方程組的方法的共同特點(diǎn)和各自的優(yōu)勢(shì).
1.關(guān)于二元一次方程組的兩種解法:代入消元法和加減消元法,通過比較,我們發(fā)現(xiàn)其實(shí)質(zhì)都是消元,即通過消去一個(gè)未知數(shù),化“二元”為“一元”.
2.只有當(dāng)方程組的某一方程中某一未知數(shù)的系數(shù)的絕對(duì)值是1時(shí),用代入消元法較簡(jiǎn)單,其他的用加減消元法較簡(jiǎn)單.
⑵完成課本隨堂練習(xí) ⑶補(bǔ)充練習(xí):
①選擇:二元一次方程組324526
xyxy的解是( ).
A.11yx B. 211yx C.
211yx D. 211
yx
②2
22350xyxy,求x,y的值. ③解方程組 321253xyxy.
目的:通過練習(xí),使學(xué)生熟練地用加減法解二元一次方程組并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力.
設(shè)計(jì)效果:通過本環(huán)節(jié)的練習(xí),學(xué)生能夠較熟練地運(yùn)用加減法解二元一次方程組.
第四環(huán)節(jié):課堂小結(jié) 內(nèi)容:
1.關(guān)于二元一次方程組的兩種解法:代入消元法和加減消元法.比較這兩種解法我們發(fā)現(xiàn)其實(shí)質(zhì)都是消元,即通過消去一個(gè)未知數(shù),化“二元”為“一元”.
2. 用加減消元法解方程組的條件:某一未知數(shù)的系數(shù)的絕對(duì)值相等. 3. 用加減法解二元一次方程組的步驟: ①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等; ②加減消元; ③解一元一次方程;
④求另一個(gè)未知數(shù)的值,得方程組的解. 目的:鞏固和加深對(duì)化歸思想的理解和運(yùn)用.
設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).
第五環(huán)節(jié):布置作業(yè)
1.課本習(xí)題5.3
2.閱讀讀一讀·你知道計(jì)算機(jī)是如何解方程組嗎.
目的:讓學(xué)生初步了解計(jì)算機(jī)求解二元一次方程組的基本思想和具體步驟,進(jìn)一步體會(huì)消元思想,同時(shí)開闊學(xué)生視野,有興趣的學(xué)生可能會(huì)利用計(jì)算機(jī)、計(jì)算器進(jìn)行嘗試求解、甚至有的學(xué)生還會(huì)對(duì)三元以上的方程進(jìn)行嘗試,這些活動(dòng)經(jīng)驗(yàn)對(duì)學(xué)生的發(fā)展十分重要.
四、教學(xué)設(shè)計(jì)反思
1.本節(jié)課是讓學(xué)生學(xué)習(xí)二元一次方程組的加減消元解法并能利用加減消元法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.
2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對(duì)問題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
3.通過精心設(shè)計(jì)的問題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固議練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
4.對(duì)于數(shù)學(xué)基礎(chǔ)比較扎實(shí)的學(xué)生完成情況好,在數(shù)和整式運(yùn)算上沒有過關(guān)的學(xué)生,求解速度慢而且正確率較低,在教學(xué)過程中要注意這一點(diǎn).
視頻來源:優(yōu)質(zhì)課網(wǎng) www.m.fsyixinda.com
首頁 | 網(wǎng)站地圖| 關(guān)于會(huì)員| 移動(dòng)設(shè)備| 購買本站VIP會(huì)員

本站大部分資源來源于會(huì)員共享上傳,除本站組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)和本站聯(lián)系并提供相關(guān)證據(jù),我們將在3個(gè)工作日內(nèi)改正。
Copyright© 2011-2021 優(yōu)質(zhì)課網(wǎng) 版權(quán)所有 by dedecms&zz 豫ICP備11000100號(hào)
工作時(shí)間: AM9:00-PM6:00 優(yōu)質(zhì)課網(wǎng)QQ客服:983228566 投稿信箱:983228566@qq.com