視頻標簽:相似三角形復習課
所屬欄目:初中數學優質課視頻
視頻課題:人教版初中數學九年級下冊第27章相似三角形復習課-天津
教學設計、課堂實錄及教案:人教版初中數學九年級下冊第27章相似三角形復習課-天津市濱海新區
相似三角形復習課
一、內容和內容解析:
1、內容
內容選自人教版九年級下冊第二十七章。 2、內容解析
相似三角形這一章是按照從一般到特殊的順序呈現研究對象,即“相似圖形的現實模型——相似圖形——相似多邊形——相似三角形——位似圖形”。 相似三角形是全等三角形的拓廣和發展,而相似三角形的判定是相似三角形的主要內容之一,相似三角形的判定是進一步對相似三角形的本質和定義的全面研究,也是相似三角形性質的研究基礎,同時還是研究圓中比例線段和三角函數的重要工具,可見一相似三角形的判定占據著重要的地位。因此本節設計的主要復習“相似三角形的判定方法”,考察學生是否掌握“預備定理”、“邊邊邊”、“邊角邊”、“角角”,綜合解決有關問題.
綜上所述,本節課的教學重點是:利用相似三角形的判定定理,學會從復雜圖形中分理出基本圖形,能分析出其中的基本元素及其關系,能由基本圖形的性質導出復雜圖形的性質。
二、教學目標
1、目標
(1)通過學習,掌握“三角形相似的判定定理”。 (2)綜合應用判定定理解決問題。 2、目標解析
達成目標(1)的具體要求是:應用這些定理解決數學問題,能夠從復雜圖形中分理出基本圖形,能分析出其中的基本元素及其對應關系。
達成目標(2)的具體要求是:在解決問題過程,學生能夠形成圖形運動變化的思想,能用運動變化的觀點看問題,感受數形結合思想,分類討論思想等數學思想方法。
三、學生學情分析:
相似三角形屬于空間與圖形這部分內容,在前面學生已經學習了全等三角形的有關的性質,會借助于變換、證明等手段去認識圖形的性質,類比全等三角形學習相似三角形的知識.但學生獨立整理知識的經驗不多,綜合能力有限,難以整理出系統、簡約的知識結構,而且復習中還需要根據問題情境,選擇適當的知識來解決問題,學生可能遇到很多困難。 綜上所述,本節課的難點是:綜合應用相似三角形的判定解決有關問題。
四、教學過程
< 一、知識梳理 >
問題:現在給你一個銳角三角形ABC和一條直線MN
問題:請同學們利用直線MN在△ABC上或在邊的延長線作出一個三角形與△ABC相似,并請同學們說明理由
【設計意圖】結合圖形再次回顧知識。讓學生通過觀察圖形想到相關的定理和性
質,使學生更加牢固的掌握相似三角形的判定方法。
< 二、基礎練習 >
1、在平行四邊形ABCD中,E是邊AD的中點,EC交對角線BD于點F,則EF:FC等于( ) A、3:2 B、3:1 C、1:1 D、1:2
2、下列各組圖形中有可能不相似的是( ) A、各有一個角是45°的兩個等腰三角形 B、各有一個角是60°的兩個等腰三角形 C、各有一個角是105°的兩個等腰三角形 D、兩個等腰直角三角形
3 、已知△ABC中,AB=10,AC=5,點D是邊AC上一點,且AD=2,若點E是邊AB上一點,當AE= 時,△AED與△ABC相似.
師生互動,解決問題。
【設計意圖】通過簡單的題目提煉方法。讓學生自己摸索不同題型所采用的不同
方法,通過從復雜圖形中提煉基本型,選擇合適的判定方法證明相似,如果不能直接判定相似的,需要分類討論,分別計算結果。
< 三、典例分析>
【師生活動1】
例1 已知,如圖,AD是△ABC中∠BAC的角平分線,AB·AC=AD·AE 求證:△AEB ∽△ACD
例2 如圖,CD是Rt△ABC斜邊上的高,E為
AC的中點,ED交CB的延長線于F。 求證:BD·CF=CD·DF
例3 如圖,AB是⊙O的直徑,C是⊙O上的一點,連接AC,過點C作CD⊥AB于點D(AD<DB),點E是DB上任意一點(點D、B除外),直線CE交⊙
O 于點F,連接AF與直線CD交于點G. 求證:AC 2
=AG·AF
學生自選一種方法書寫完整,派學生代表到黑板上演示。
【設計意圖】引導學生如何觀察幾何圖形,發散學生的思維,建立幾何空間的想
象能力。讓學生進一步熟練基本型,選擇格式的方法進行判定,可以利用圓的有關知識尋找“邊”“角”的信息輔助相似三角形的判定。
視頻來源:優質課網 www.m.fsyixinda.com